Chapter 2 Quadratic and Other Special Functions

1. Write the equation \(x^2 - 4x + 7 = 5 - 5x^2 \) in general form.
 A) \(6x^2 + 4x + 12 = 0 \)
 B) \(-x^2 - 4x + 2 = 0 \)
 C) \(6x^2 - 4x + 2 = 0 \)
 D) \(x^2 - 4x - 12 = 0 \)
 E) \(-6x^2 + 4x - 2 = 0 \)
 Ans: C

2. Write the equation \((z - 2)(z - 8) = 3 \) in general form.
 A) \(z^2 - 10z + 13 = 0 \)
 B) \(z^2 + 10z + 16 = 0 \)
 C) \(z^2 - 8z + 13 = 0 \)
 D) \(z^2 - 8z + 16 = 0 \)
 E) \(z^2 + 8z + 16 = 0 \)
 Ans: A

3. Solve the equation \(x^2 - 5x = x + 16 \).
 A) \(x = -8, x = 2 \)
 B) \(x = 8, x = 2 \)
 C) \(x = -8, x = -2 \)
 D) \(x = 16, x = -4 \)
 E) \(x = 8, x = -2 \)
 Ans: E

4. Solve the equation \(4x^2 - 4x + 1 = 0 \) by factoring.
 A) \(x = -\frac{1}{2} \)
 B) \(x = \frac{1}{2} \)
 C) \(x = 2 \)
 D) \(x = \frac{1}{4} \)
 E) \(x = \frac{1}{2}, x = -\frac{1}{2} \)
 Ans: B
5. Solve the equation by using the quadratic formula. Give real solutions only.
\[3x^2 + x + 1 = 0\]
A) \[x = \frac{1 \pm \sqrt{-11}}{6}\]
B) \[x = \frac{-1 \pm \sqrt{-11}}{6}\]
C) \[x = \frac{-1 \pm \sqrt{13}}{6}\]
D) no real solutions
E) \[x = \frac{-1 \pm \sqrt{-11}}{3}\]
Ans: D

6. Solve the equation by using the quadratic formula. Give real answers rounded to two decimal places.
\[6x^2 = 4x + 7\]
A) \[x = 1.46, x = -0.80\]
B) \[x = -1.46, x = -0.80\]
C) \[x = 15.67, x = 13.00\]
D) \[x = 2.33, x = 0.20\]
E) \[x = 1.71, x = -0.55\]
Ans: A

7. Find the exact real solutions to the equation, if they exist.
\[y^2 = 7\]
A) \[y = \pm 7\]
B) \[y = \sqrt{7}\]
C) \[y = 3.5\]
D) \[y = \pm \sqrt{7}\]
E) no real solutions
Ans: D

8. Find the exact real solutions to the equation, if they exist.
\[(x + 7)^2 = 64\]
A) \[x = 1, x = -15\]
B) \[x = \pm 8\]
C) \[x = 57\]
D) \[x = 71\]
E) \[x = 8\]
Ans: A
9. Find the exact real solutions of the equation \(x^2 + 16x = 4x - 35 \), if they exist.
 A) \(x = 5 \) and \(x = 7 \)
 B) \(x = -5 \) and \(x = -7 \)
 C) \(x = 6 \) and \(x = 8 \)
 D) \(x = 6 \) and \(x = -7 \)
 E) \(x = -6 \) and \(x = -8 \)
 Ans: B

10. Find the exact real solutions of the equation \(\frac{5y^2}{24} - \frac{17}{12} y + 1 = 0 \), if they exist.
 A) \(y = -\frac{4}{5} \) and \(y = -6 \)
 B) \(y = 4 \) and \(y = 6 \)
 C) \(y = -4 \) and \(y = -6 \)
 D) \(y = \frac{4}{5} \) and \(y = 6 \)
 E) \(y = -6 \) and \(y = 4 \)
 Ans: D

11. Find the exact real solutions of the equation \(6x^2 = -12x - 5 \), if they exist.
 A) \(x = -1 + \frac{\sqrt{66}}{6} \) and \(x = -1 - \frac{\sqrt{66}}{6} \)
 B) \(x = -1 + \frac{\sqrt{6}}{6} \) and \(x = -1 - \frac{\sqrt{6}}{6} \)
 C) \(x = -1 + \frac{\sqrt{31}}{6} \) and \(x = -1 - \frac{\sqrt{31}}{6} \)
 D) \(x = -1 + \frac{\sqrt{6}}{5} \) and \(x = -1 - \frac{\sqrt{6}}{5} \)
 E) Real solutions do not exist.
 Ans: B

12. Solve the equation by using a graphing utility.
 \(-14x + 105 - 7x^2 = 0\)
 A) \(x = 3, x = -5 \)
 B) \(x = 3, x = -3 \)
 C) \(x = -42, x = 70 \)
 D) \(x = -3, x = 5 \)
 E) \(x = -7, x = 105 \)
 Ans: A
13. Solve the equation $6.5z^2 - 6.3z - 2.6 = 0$ by using a graphing utility. Round your answer to two decimal places.
A) $x \approx 1.04$ or $x \approx -0.07$
B) $x \approx 1.86$ or $x \approx -0.92$
C) $x \approx 1.28$ or $x \approx -0.31$
D) $x \approx 1.75$ or $x \approx -0.78$
E) $x \approx 1.40$ or $x \approx -0.43$
Ans: C

14. Multiply both sides of the equation $x + \frac{9}{x} = 10$ by the LCD, and then solve the resulting quadratic equation.
A) $x = 9, 1$
B) $x = 10, 1$
C) $x = 9, 10$
D) $x = 1, -1$
E) $x = 9, -1$
Ans: A

15. Solve the equation $\frac{x}{x-4} = 5x + \frac{4}{x-4}$ by first multiplying by the LCD, and then solving the resulting equation.
A) $x = 1$
B) $x = -1$
C) $x = \frac{1}{5}$
D) $x = \frac{1}{5}, x = 4$
E) $x = \frac{1}{5}$
Ans: D

16. Solve the equation below using quadratic methods.
$(x+8)^2 + 3(x+8) + 2 = 0$
A) $x = 10, x = 9$
B) $x = 8, x = 2$
C) $x = 6, x = 1$
D) $x = -10, x = -9$
E) $x = 8, x = 3$
Ans: D
17. If the profit from the sale of \(x \) units of a product is \(p = 85x - 400 - x^2 \), what level(s) of production will yield a profit of $1100?

A) less than 25 units of production.
B) more than 60 units of production
C) 85 units of production
D) 35 units of production
E) 25 or 60 units of production.

Ans: E

18. If a ball is thrown upward at 64 feet per second from the top of a building that is 100 feet high, the height of the ball can be modeled by \(s = 100 + 64t - 16t^2 \), where \(t \) is the number of seconds after the ball is thrown. How long after it is thrown is the height 100 feet?

A) \(t = 4 \) seconds
B) \(t = 32 \) seconds
C) \(t = 1 \) seconds
D) \(t = 64 \) seconds
E) \(t = 5.20 \) seconds

Ans: A

19. The amount of airborne particulate pollution \(p \) from a power plant depends on the wind speed \(s \), among other things, with the relationship between \(p \) and \(s \) approximated by \(p = 49 - 0.01s^2 \). Find the value of \(s \) that will make \(p = 0 \).

A) \(s = 700 \)
B) \(s = 80 \)
C) \(s = 70 \)
D) \(s = 49 \)
E) \(s = 490 \)

Ans: C

20. The sensitivity \(S \) to a drug is related to the dosage size by \(S = 90x - x^2 \), where \(x \) is the dosage size in milliliters. Determine all dosages that yield 0 sensitivity.

A) \(x = 0 \) milliliters, \(x = 9 \) milliliters
B) \(x = 0 \) milliliters, \(x = 90 \) milliliters
C) \(x = 0 \) milliliters, \(x = -90 \) milliliters
D) \(x = -90 \) milliliters, \(x = 90 \) milliliters
E) \(x = 0 \) milliliters

Ans: B
21. The time \(t \), in seconds, that it takes a 2005 Corvette to accelerate to \(x \) mph can be described by \(t = 0.001(0.729x^2 + 15.415x + 607.738) \). How fast is the Corvette going after 9.06 seconds? Give your answer to the nearest tenth.
A) 101.6 mph
B) 97.6 mph
C) 103.6 mph
D) 118.3 mph
E) 118.8 mph
Ans: B

22. Suppose that the percent of total personal income that is used to pay personal taxes is given by \(y = 0.034x^2 - 0.044x + 12.642 \), where \(x \) is the number of years past 1990 (Source: Bureau of Economic Analysis, U.S. Department of Commerce). Find the year or years when the percent of total personal income used to pay personal taxes is 14 percent.
A) 2007
B) 1997
C) 1996
D) 2032
E) 2004
Ans: B

23. A fissure in the earth appeared after an earthquake. To measure its vertical depth, a stone was dropped into it, and the sound of the stone’s impact was heard 3.1 seconds later. The distance (in feet) the stone fell is given by \(s = 18t^2 \), and the distance (in feet) the sound traveled is given by \(s = 1090t \). In these equations, the distances traveled by the sound and the stone are the same, but their times are not. Using the fact that the total time is 3.1 seconds, find the depth of the fissure. Round your answer to two decimal places.
A) 63.51 feet
B) 60.56 feet
C) 157.25 feet
D) 161.25 feet
E) 162.25 feet
Ans: C

24. An equation that models the number of users of the Internet is \(y = 11.786x^2 - 142.214x + 493 \) million users, where \(x \) is the number of years past 1990 (Source: CyberAtlas, 1999). If the pattern indicated by the model remains valid, when does this model predict there will be 500 million users?
A) 2001
B) 2014
C) 2011
D) 2005
E) 2003
Ans: E
25. The model for body-heat loss depends on the coefficient of convection K, which depends on wind speed v according to the equation $K^2 = 19v + 5$ where v is in miles per hour. Find the positive coefficient of convection when the wind speed is 26 mph. Round your answer to the nearest integer.
A) $K \approx 19$
B) $K \approx 22$
C) $K \approx 5$
D) $K \approx 8$
E) $K \approx 20$
Ans: B

26. Find the vertex of the graph of the equation
\[y = 0.125x^2 + x \]
A) $(4, -2)$
B) $(4, 2)$
C) $(-2, -4)$
D) $(-4, -2)$
E) $(0, 8)$
Ans: D

27. Determine if the vertex of the graph of the equation is a maximum or minimum point.
\[y = \frac{1}{4}x^2 + 3x \]
A) vertex is at a maximum point
B) vertex is at a minimum point
C) has no vertex
Ans: B

28. Find the vertex of the graph of the equation
\[y = 2x^2 - 3x \]
A) $(0.75, -1.13)$
B) $(2, -3)$
C) $(0,1.50)$
D) $(-1.13, 0.75)$
E) $(1.50, -1.50)$
Ans: A
29. Determine what value of x gives the optimal value of the function, and determine the optimal (maximum or minimum) value.

$$y = 2x^2 - 3x$$

A) optimal value of x: 0, optimal value: 1
B) optimal value of x: −1.13, optimal value: 0.75
C) optimal value of x: 1.50, optimal value: −1.50
D) optimal value of x: −0.75, optimal value: −1.13
E) optimal value of x: 0.75, optimal value: −1.13

Ans: E

30. Determine whether the function’s vertex is a maximum point or a minimum point and find the coordinates of this point.

$$y = x^2 + 12x + 6$$

A) vertex: (−6, −30), a minimum point
B) vertex: (6, −42), a maximum point
C) vertex: (6, −42), a minimum point
D) vertex: (−6, −30), a maximum point
E) vertex: (−42, 6), a maximum point

Ans: A
31. Sketch the graph of the following function.

\[y = x - \frac{1}{4}x^2 \]

A)

B)

C)

D)
32. Find the zeros, if any exist.

\(y = x^2 + 9x + 15 \)

A) zeros at \(-2.21\) and \(-6.79\)

B) zeros at 0 and 9

C) zeros at 6.00 and -15.00

D) no zeros

E) zeros at \(x = 0\) and 21

Ans: A
33. Determine whether the vertex of the graph of the following function vertex is a maximum point or a minimum point. Also find the coordinates of the vertex.

\[
\frac{1}{7}x^2 + 2x - y - 8 = 0
\]

A) vertex: \((-7, -15)\), a maximum point
B) vertex: \((-7, -15)\), a minimum point
C) vertex: \((7, -15)\), a minimum point
D) vertex: \((14, 48)\), a minimum point
E) vertex: \((-15, 7)\), a maximum point

Ans: B

34. Find the x-intercepts, if any exist.

\[
\frac{1}{4}x^2 + 3x - y - 5 = 0
\]

A) x-intercepts: \(x = -6.00, x = -14.00\)
B) x-intercepts: \(x = -1.48, x = 13.48\)
C) x-intercepts: \(x = 1.48, x = -13.48\)
D) x-intercepts: \(x = 12.00, x = 67.00\)
E) no x-intercepts

Ans: C

35. How is the graph of \(y = x^2\) shifted to obtain the graph of the function \(y = (x-5)^2 + 11\)?

A) shifted 5 units to the left and 11 units up
B) shifted 5 units to the right and 11 units down
C) shifted 25 units to the left and 11 units up
D) shifted 10 units to the right and 11 units down
E) shifted 5 units to the right and 11 units up

Ans: E

36. Use a graphing utility to find the vertex of the function.

\[
y = \frac{1}{20}x^2 - x - \frac{3}{4}
\]

A) vertex: \((10, -5.75)\)
B) vertex: origin
C) vertex: \((10, 15.75)\)
D) vertex: \((10, 14.25)\)
E) vertex: \((-10, -5.75)\)

Ans: A
37. Sketch the graph of the following function by using graphing calculator.

\[y = \frac{1}{4} x^2 + 3x + 12 \]

A)

B)

C)

D)
38. Find the average rate of change of the function between the given values of x.
 $y = -5x - x^2$ between $x = -8$ and $x = 3$.
 A) 11
 B) 24
 C) 0
 D) -6
 E) 48
 Ans: C

39. Find the vertex and then determine the range of the function.
 $y = 71 + 0.2x - 0.01x^2$
 A) all values greater than or equal to 72
 B) all values less than or equal to 68
 C) all values greater than or equal to 10
 D) all values less than or equal to 90
 E) all values less than or equal to 72
 Ans: E
40. Use a graphing utility to approximate the solutions to \(f(x) = 0 \).
\[
f(x) = 3x^2 - 20x + 20
\]
A) \(x = 16.32, x = 3.68 \)
B) \(x = -1.23, x = -5.44 \)
C) \(x = 5.44, x = 1.23 \)
D) \(x = 3.33, x = -13.33 \)
E) \(x = -5.44, x = 1.23 \)
Ans: C

41. Factor the function \(f(x) = 2x^2 - 21x + 49 \).
A) \(f(x) = (x - 7)(x - 7) \)
B) \(f(x) = -21(x - 7)(2x - 7) \)
C) \(f(x) = (x - 7)(2x - 7) \)
D) \(f(x) = (x + 7)(x - \frac{7}{2}) \)
E) \(f(x) = (7x - 1)(2x - 7) \)
Ans: C

42. Solve \(f(x) = 0 \) for the function \(f(x) = 5x^2 - 102x + 289 \).
A) \(x = \frac{17}{5}, x = -102 \)
B) \(x = 17, x = -\frac{17}{5} \)
C) \(x = 17, x = \frac{5}{17} \)
D) \(x = 17, x = \frac{17}{5} \)
E) no real solutions
Ans: D

43. The daily profit from the sale of a product is given by \(P = 20x - 0.2x^2 - 99 \) dollars. What level of production maximizes profit?
A) production level of 100 units
B) production level of 10 units
C) production level of 5 units
D) production level of 50 units
E) production level of 95 units
Ans: D
44. The daily profit from the sale of a product is given by \(P = 20x - 0.2x^2 - 96 \) dollars. What is the maximum possible profit?
 A) $894
 B) $1404
 C) $404
 D) $50
 E) $95
 Ans: C

45. The daily profit from the sale of a product is given by \(P = 88x - 0.3x^2 - 210 \) dollars. What is the maximum possible profit? Round your answer to the nearest dollar.
 A) $6,243
 B) $19,209
 C) $12,682
 D) $147
 E) $291
 Ans: A

46. The yield in bushels from a grove of orange trees is given by \(Y = x(1100 - x) \), where \(x \) is the number of orange trees per acre. How many trees will maximize the yield?
 A) 1100 trees
 B) 2200 trees
 C) 600 trees
 D) 1150 trees
 E) 550 trees
 Ans: E

47. The sensitivity \(S \) to a drug is related to the dosage \(x \) in milligrams by \(S = 980x - x^2 \). Use a graphing utility to determine what dosage gives maximum sensitivity.
 A) 98
 B) 240,100
 C) 980 and \(x = 0 \)
 D) 980
 E) 490
 Ans: E

48. A ball thrown vertically into the air has its height above ground given by \(s = 112t - 16t^2 \), where \(t \) is in seconds and \(s \) is in feet. Find the maximum height of the ball.
 A) 224 feet
 B) 112 feet
 C) 7 feet
 D) 16 feet
 E) 196 feet
 Ans: E
49. The owner of a skating rink rents the rink for parties at $648 if 54 or fewer skaters attend, so that the cost per person is $12 if 54 attend. For each 5 skaters above 54, she reduces the price per skater by $0.50. Which table gives the revenue generated if 54, 64, and 74 skaters attend?

A)	Price	No. of skaters	Total Revenue
12	54	$740	
11	64	$704	
10	74	$648	

B)	Price	No. of skaters	Total Revenue
12	54	$648	
13	64	$704	
14	74	$740	

C)	Price	No. of skaters	Total Revenue
12	54	$648	
11	64	$704	
10	74	$740	

D)	Price	No. of skaters	Total Revenue
12	54	$648	
13	64	$832	
14	74	$1036	

E)	Price	No. of skaters	Total Revenue
12	54	$648	
11.5	64	$736	
11	74	$814	

Ans: C

50. When a stone is thrown upward, it follows a parabolic path given by a form of the equation \(y = ax^2 + bx + c \). If \(y = 0 \) represents ground level, find the equation of a stone that is thrown from ground level at \(x = 0 \) and lands on the ground 100 units away if the stone reaches a maximum height of 100 units.

A) \(y = -\frac{1}{50} x^2 + 2x \)

B) \(y = -\frac{1}{25} x^2 + 4x \)

C) \(y = 4x^2 - \frac{1}{25} x \)

D) \(y = -2x^2 - \frac{1}{50} x \)

E) \(y = 2\left(x^2 + 50x\right) \)

Ans: B
51. In 1995, America’s 45 million Social Security recipients received a 2.6% cost-of-living increase, the second smallest increase in nearly 20 years, a reflection of lower inflation. The percent increase might be described by the function

\[p(t) = -0.4375t^2 + 7.4t - 34.3625 \]

where \(t \) is the number of years past 1980. In what year does the model predict the highest cost of living percent increase?

A) 1989
B) 2008
C) 1986
D) 1988
E) none of the above
Ans: D
52. Sketch the first quadrant portions of the following functions and estimate the market equilibrium point.

Supply: \(p = \frac{1}{2}q^2 + 10 \)

Demand: \(p = 84 - 26q - 5q^2 \)

A) \(E: (4, 18) \)

B) \(E: (2, 12) \)

C)
D) \(E: (4, 14) \)

E) \(E: (2, 12) \)

Ans: B
53. A supply function has the equation is \(p = \frac{1}{2} q^2 + 40 \), and the demand function is described by the equation \(p = 86 - 6q - 3q^2 \). Algebraically determine the equilibrium point for the supply and demand functions.
A) \(E(2.87, -4.58) \)
B) \(E(-4.58, 44.11) \)
C) \(E(\frac{1}{2}, 86) \)
D) \(E(2.87, 44.11) \)
E) \(E(2.87, 4.11) \)
Ans: D

54. If the supply function for a commodity is \(p = q^2 + 8q + 16 \) and the demand function is \(p = -9q^2 + 6q + 426 \), find the equilibrium quantity and equilibrium price.
A) \(E(6.30, 35.15) \)
B) \(E(-6.50, 72.74) \)
C) \(E(6.30, 72.74) \)
D) \(E(6.30, 51.15) \)
E) \(E(6.30, 106.17) \)
Ans: E

55. If the supply and demand functions for a commodity are given by \(8p - q = 290 \) and \((p + 2)q = 5720 \), respectively, find the price that will result in market equilibrium.
A) 38
B) 110
C) 50
D) 142
E) 63
Ans: C

56. If the supply and demand functions for a commodity are given by \(p - q = 10 \) and \(q(2p - 10) = 1000 \), what is the equilibrium price and what is the corresponding number of units supplied and demanded?
A) \(E(30.00, 20.00) \)
B) \(E(30.00, -15.00) \)
C) \(E(30.00, 40.00) \)
D) \(E(15.00, -25.00) \)
E) \(E(15.00, 40.00) \)
Ans: A
57. The supply function for a product is \(2p - q - 10 = 0\), while the demand function for the same product is \((p + 10)(q + 30) = 7200\). Find the market equilibrium point \(E(q,p)\).

A) \(E(110.00, 50.00)\)
B) \(E(-150.00, -70.00)\)
C) \(E(30,10)\)
D) \(E(90.00,50.00)\)
E) \(E(-70.00,50.00)\)

Ans: D

58. The supply function for a product is \(2p - q - 10 = 0\), while the demand function for the same product is \((p + 10)(q + 30) = 6600\). If a $22 tax is placed on production of the item, then the supplier passes this tax on by adding $22 to his selling price. Find the new equilibrium point \(E(q,p)\) for this product when the tax is passed on. (The new supply function is given by \(p = \frac{1}{2}q + 27\).)

A) \(E(32.17, 43.08)\)
B) \(E(44.46, 49.23)\)
C) \(E(32.17, 49.23)\)
D) \(E(64.98, 59.49)\)
E) \(E(-168.98, 43.08)\)

Ans: D

59. The total costs for a company are given by \(C(x) = 2925 + 20x + x^2\), and the total revenues are given by \(R(x) = 130x\). Find the break-even points.

A) Break-even values are at \(x = 45\) and \(x = 65\) units.
B) Break-even values are at \(x = \text{inf}\) units.
C) Break-even values are at \(x = -\text{inf}\) units.
D) Break-even values are at \(x = 22.50\) and \(x = 32.50\) units.
E) Break-even values are at \(x = 65\) units.

Ans: A

60. If a firm has the following cost and revenue functions, find the break-even points.

\[
C(x) = 4800 + 25x + \frac{1}{2}x^2,
\]

\[
R(x) = \left(215 - \frac{1}{2}x\right)x
\]

A) Break-even values are at \(x = 40\) and \(x = 160\) units.
B) Break-even values are at \(x = 30\) and \(x = 110\) units.
C) Break-even values are at \(x = 40\) and \(x = 110\) units.
D) Break-even values are at \(x = 160\) and \(x = 110\) units.
E) Break-even values are at \(x = 30\) and \(x = 160\) units.

Ans: E
If a company has total costs \(C(x) = 15,000 + 35x + 0.1x^2 \), and total revenues given by \(R(x) = 385 - 0.9x \), find the break-even points.

A) Break-even values are at \(x = 300 \) and \(175 \) units.
B) Break-even values are at \(x = 300 \) and \(50 \) units.
C) Break-even values are at \(x = 0 \) and \(427.78 \) units.
D) Break-even values are at \(x = 175 \) units.
E) Break-even values are at \(x = 175 \) and \(427.78 \) units.
Ans: B

If total costs are \(C(x) = 1100 + 1500x \) and total revenues are \(R(x) = 1620 - x^2 \), find the break-even points.

A) Break-even values are at \(x = 10 \) and \(x = 50 \) units.
B) Break-even values are at \(x = 10 \) and \(x = 110 \) units.
C) Break-even values are at \(x = 50 \) and \(x = 110 \) units.
D) Break-even values are at \(x = 10 \) and \(x = 115 \) units.
E) Break-even values are at \(x = 50 \) and \(x = 115 \) units.
Ans: B

Given the profit function, \(P(x) = -14.5x + 0.1x^2 + 300 \), and that production is restricted to fewer than 75 units, find the break-even point(s).

A) Break-even value is at \(x = 21 \) units.
B) Break-even value is at \(x = 20.83 \) units.
C) Break-even value is at \(x = 75 \) units.
D) Break-even value is at \(x = 120 \) units.
E) Break-even value is at \(x = 25 \) units.
Ans: E

Find the maximum revenue for the revenue function \(R(x) = 475x - 0.8x^2 \).

A) $70,507.81
B) $211,523.44
C) $52,880.86
D) $193,896.48
E) $212,523.44
Ans: A

If, in a monopoly market, the demand for a product is \(p = 170 - 0.25x \), and the revenue function is \(R = px \), where \(x \) is the number of units sold, what price will maximize revenue?

A) Price that will maximize revenue is \(p = 85.00 \).
B) Price that will maximize revenue is \(p = 191.25 \).
C) Price that will maximize revenue is \(p = 255.00 \).
D) Price that will maximize revenue is \(p = 340.00 \).
E) Price that will maximize revenue is \(p = 170.00 \).
Ans: A
66. The profit function for a certain commodity is \(P(x) = 110x - x^2 - 900 \). Find the level of production that yields maximum profit, and find the maximum profit.

A) Production levels of 110 yields a maximum profit of $900.
B) Production levels of 110 yields a maximum profit of $2125.
C) Production levels of 55 yields a maximum profit of $5095.
D) Production levels of 55 yields a maximum profit of $3025.
E) Production levels of 55 yields a maximum profit of $2125.

Ans: E
67. Use a graphing calculator to graph the profit function \(P(x) = 70x - 0.1x^2 - 6000. \)

A)
E)

Ans: E
68. The graph of the profit function \(P(x) = 70x - 0.1x^2 - 6000 \) is given as follows.

Consider the average rate of change of the profit from \(a \) to 350 where \(a \) lies to the left of \(c \). Does the average rate of change of the profit get closer to 0 or farther from 0 as \(a \) gets closer to 350?

A) closer to 0
B) farther from 0

Ans: A

69. Form the profit function for the cost and revenue functions, where the total costs and total revenues are given by \(C(x) = 15,900 + 35x + 0.1x^2 \) and \(R(x) = 395x - 0.9x^2 \).

A) \(P(x) = -0.8x^2 + 360x + 15,900 \)
B) \(P(x) = -x^2 + 360x - 15,900 \)
C) \(P(x) = -x^2 + 430x - 15,900 \)
D) \(P(x) = -x^2 + 360x + 15,900 \)
E) \(P(x) = -0.8x^2 + 430x - 15,900 \)

Ans: B

70. Suppose a company has fixed costs of $27,600 and variable costs of \(\frac{3}{5}x + 222 \) dollars per unit, where \(x \) is the total number of units produced. Suppose further that the selling price of its product is \(1275 - \frac{3}{5}x \) dollars per unit. Find the break-even points.

A) Break-even values are at \(x = 1026.10 \) and \(x = 26.90 \).
B) Break-even values are at \(x = 1053 \) and \(x = 0 \).
C) Break-even values are at \(x = 22.48 \) and \(x = 1227.52 \).
D) Break-even values are at \(x = 1026.10 \) and \(x = 27,600 \).
E) Break-even values are at \(x = 555 \) and \(x = 2125.00 \).

Ans: A
71. Suppose a company has fixed costs of $27,000 and variable costs of \(\frac{2}{5}x + 222 \) dollars per unit, where \(x \) is the total number of units produced. Suppose further that the selling price of its product is \(1300 - \frac{2}{5}x \) dollars per unit. Find the maximum revenue.

A) Maximum revenue is $1052.34.
B) Maximum revenue is $27,000.
C) Maximum revenue is $26,850.00.
D) Maximum revenue is $650,000.00.
E) Maximum revenue is $600.

Ans: D

72. Assume that sales revenues for Continental Divide Mining can be described by
\[R(t) = -0.031t^2 + 0.776t + 0.179, \]
where \(t \) is the number of years past 1992. Use the function to determine the year in which maximum revenue occurs.

A) Maximum revenue occurred during 2005.
C) Maximum revenue occurred during 2004.
D) Maximum revenue occurred during 2017.

Ans: C

73. Assume that sales revenues, in millions, for Continental Divide Mining can be described by
\[R(t) = -0.041t^2 + 0.676t + 0.179, \]
where \(t \) is the number of years past 1992. Use the function to find the maximum revenue.

A) Maximum revenue is $8.244 million.
B) Maximum revenue is $5.636 million.
C) Maximum revenue is $2.786 million.
D) Maximum revenue is $2.965 million.
E) Maximum revenue is $13.996 million.

Ans: D

74. Assume that costs and expenses for Continental Divide Mining can be described by \(C(t) = -0.011t^2 + 0.526t + 0.722 \) and the sales revenue can be described by \(R(t) = -0.027t^2 + 0.811t + 0.178 \) where \(t \) is the number of years since the beginning of 1992. Find the year in which maximum profit occurs.

A) 2009
B) 1995
C) 2000
D) 2001
E) 1996

Ans: C
75. Sketch the graph of the function \(f(x) = -2 \).

A)

B)

C)

D)

E)

Ans: C
76. Sketch the graph of the function \(y = \sqrt{x} + 1 \).

A) \[
\begin{array}{c}
\begin{tikzpicture}
 \draw[->] (-4,0) -- (4,0); \draw[->] (0,-4) -- (0,4);
 \draw (0,1) -- (4,2);
\end{tikzpicture}
\end{array}
\]

B) \[
\begin{array}{c}
\begin{tikzpicture}
 \draw[->] (-4,0) -- (4,0); \draw[->] (0,-4) -- (0,4);
 \draw (0,1) -- (4,2);
\end{tikzpicture}
\end{array}
\]

C) \[
\begin{array}{c}
\begin{tikzpicture}
 \draw[->] (-4,0) -- (4,0); \draw[->] (0,-4) -- (0,4);
 \draw (0,1) -- (4,2);
\end{tikzpicture}
\end{array}
\]

D) \[
\begin{array}{c}
\begin{tikzpicture}
 \draw[->] (-4,0) -- (4,0); \draw[->] (0,-4) -- (0,4);
 \draw (0,1) -- (4,2);
\end{tikzpicture}
\end{array}
\]

E) \[
\begin{array}{c}
\begin{tikzpicture}
 \draw[->] (-4,0) -- (4,0); \draw[->] (0,-4) -- (0,4);
 \draw (0,1) -- (4,2);
\end{tikzpicture}
\end{array}
\]

Ans: A
77. Sketch the graph of the function $y = 3\sqrt{x-1}$.

A)

B)

C)

D)

E)

Ans: E
78. Sketch the graph of the function below.

\[y = \frac{1}{x} \]

A)

B)

C)

D)

E)

Ans: B
79. Sketch the graph of the function \(y = |x| \).

A)

B)

C)

D)

E)

Ans: D
80. Sketch the graph of the function \(f(x) = \begin{cases} 1 & \text{if } x < 1 \\ x^2 & \text{if } x \geq 1 \end{cases} \).

A)

B)

C)

D)

E)

Ans: B
Sketch the graph of the function \(f(x) = \begin{cases}
-x, & \text{if } x \leq -1 \\
x, & \text{if } -1 < x < 1 \\
1, & \text{if } x \geq 1
\end{cases} \).

A)

B)

C)

D)

E)
82. By recognizing shapes and features of polynomial functions, sketch the graph of the function \(y = x^3 - x \). Use a graphing utility to confirm your graph.

A)

B)

C)

D)

E)

Ans: C
83. By recognizing shapes and features of polynomial functions, sketch the graph of the function \(y = x^2 - x^4 \). Use a graphing utility to confirm your graph.

\[y = x^2 - x^4 \]

A)

B)

C)

D)

E)

Ans: E
84. By recognizing shapes and features of rational functions, sketch the graph of the function \(y = \frac{x - 1}{x - 2} \). Use a graphing utility to confirm your graph.

Ans: A
85. Find the rational function whose graph is given.

A) \[y = \frac{x + 2}{x + 1} \]

B) \[y = \frac{x - 1}{x + 2} \]

C) \[y = \frac{x + 1}{x - 2} \]

D) \[y = \frac{x + 1}{x + 2} \]

E) \[y = \frac{x - 1}{x - 2} \]

Ans: D

86. If \(f(x) = -8x^{1/2} \), find \(f(25) \) and \(f(0.81) \).

A) \[f(25) = -40 \]
 \[f(0.81) = -7.2 \]

B) \[f(25) = 85 \]
 \[f(0.81) = -7.4 \]

C) \[f(25) = -52 \]
 \[f(0.81) = -7.05 \]

D) \[f(25) = -94 \]
 \[f(0.81) = -7.5 \]

E) \[f(25) = 8 \]
 \[f(0.81) = -6.92 \]

Ans: A
87. If \(k(x) = \begin{cases}
-6 & \text{if } x < 0 \\
-x^2 + 2 & \text{if } 0 \leq x < 1 \\
-8 - x & \text{if } x \geq 1
\end{cases} \), find \(k(-1) \), \(k(0) \), and \(k(5) \).

A) \(k(-1) = -1 \)
\(k(0) = -6 \)
\(k(5) = -13 \)

B) \(k(-1) = -6 \)
\(k(0) = -6 \)
\(k(5) = 3 \)

C) \(k(-1) = -6 \)
\(k(0) = 2 \)
\(k(5) = -13 \)

D) \(k(-1) = 1 \)
\(k(0) = 2 \)
\(k(5) = -8 \)

E) \(k(-1) = 1 \)
\(k(0) = 2 \)
\(k(5) = 7 \)

Ans: C

88. Determine whether the given graph is the graph of a polynomial function, a rational function (but not a polynomial), or a piecewise defined function. Use the graph to estimate the turning points.

A) polynomial function
 turning points: \(x = 0.58 \) and \(x = -0.58 \)

B) rational function
 turning points: \(x = 0.58 \) and \(x = -0.58 \)

C) polynomial function
 turning points: \(x = -1, \) \(x = 0, \) and \(x = 1 \)

D) rational function
 turning points: \(x = -1, \) \(x = 0, \) and \(x = 1 \)

E) piecewise function
 turning points: \(x = 0.5 \) and \(x = -0.4 \)

Ans: A
89. Determine whether the given graph is the graph of a polynomial function, a rational function (but not a polynomial), or a piecewise defined function. Use the graph to estimate the turning points and any asymptotes.

A) polynomial function
 turning points: $x = 0.5$
 vertical asymptote: $x = 1$
 horizontal asymptote: $y = 2$

B) rational function
 turning points: none
 vertical asymptote: $x = 1$
 horizontal asymptote: $y = 2$

C) rational function
 turning points: none
 vertical asymptote: $x = 2$
 horizontal asymptote: $y = 1$

D) piecewise function
 turning points: $x = 0.5$
 vertical asymptote: $x = 2$
 horizontal asymptote: $y = 1$

E) polynomial function
 turning points: none
 vertical asymptote: $x = 2$
 horizontal asymptote: $y = 1$

Ans: B
90. Determine whether the given graph is the graph of a polynomial function, a rational function (but not a polynomial), or a piecewise defined function. Use the graph to estimate the turning points.

A) piecewise function
 turning points: \(x = 0 \) and \(x = 2 \)
B) polynomial function
 turning points: \(x = 0 \) and \(x = 2 \)
C) rational function
 turning points: \(x = 0 \)
D) polynomial function
 turning points: \(x = 1 \)
E) piecewise function
 turning points: \(x = 1 \)
Ans: E

91. An open-top box is constructed from a square piece of cardboard with sides of length 8 ft. The volume of such a box is given by \(V = x(8 - 2x)^2 \) ft\(^3\), where \(x \) is the height of the box. Find the volume of the box if its height is 2 ft.

A) 30.5 ft\(^3\)
B) 31.5 ft\(^3\)
C) 32 ft\(^3\)
D) 34 ft\(^3\)
E) 36.5 ft\(^3\)
Ans: C
92. The amount of money invested in a certain mutual funds, measured in millions of dollars, for the years 1995 to 1999 was found to be modeled by \(f(x) = 97.25x^{1.35} \) million dollars, where \(x \) is the number of years past 1990. Will the graph of this function bend upward or will it bend downward? How much money is predicted to be in the fund in the year 2010?

A) the function's graph bends downward; the function predicts 2,800,298.24 million dollars in 2010
B) the function's graph bends upward; the function predicts 2,800,298.24 million dollars in 2010
C) the function's graph bends downward; the function predicts 1,402,924.04 million dollars in 2010
D) the function's graph bends upward; the function predicts 5549.84 million dollars in 2010
E) the function's graph bends downward; the function predicts 5549.84 million dollars in 2010

Ans: D

93. Suppose that the cost \(C \) (in dollars) of removing \(p \) percent of the particulate pollution from the smokestacks of an industrial plant is estimated by \(C(p) = \frac{7250p}{100 - p} \). What is the domain of this function? What will it cost to remove 99% of the particulate pollution?

A) domain: \(0 \leq p < 99 \)
 cost: \$717,750.00
B) domain: \(0 \leq p < 100 \)
 cost: \$717,750.00
C) domain: all \(p \) except \(p = 100 \)
 cost: \$717,750.00
D) domain: \(0 \leq p < 100 \)
 cost: \$72.49
E) domain: all \(p \) except \(p = 100 \)
 cost: \$72.49

Ans: B
94. The monthly charge for water in a small town is given by

\[f(x) = \begin{cases}
35.00 & \text{if } 0 \leq x \leq 20 \\
35.00 + 0.6(x - 20) & \text{if } x > 20
\end{cases} \]

where \(x \) is water usage in hundreds of gallons and \(f(x) \) is cost in dollars. Find the monthly charge for 1900 gallons and for 2200 gallons.

A) charge for 1900 gallons is $35.00
 charge for 2200 gallons is $36.20
B) charge for 1900 gallons is $1163.00
 charge for 2200 gallons is $1343.00
C) charge for 1900 gallons is $35.00
 charge for 2200 gallons is $48.20
D) charge for 1900 gallons is $36.20
 charge for 2200 gallons is $48.20
E) charge for 1900 gallons is $35.00
 charge for 2200 gallons is $71.20

Ans: A
95. A shipping company's charges for delivery of a package is a function of the package's weight. The following table describes the company's shipping rates.

<table>
<thead>
<tr>
<th>Weight Increment</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>First pound or fraction of a pound</td>
<td>$0.35</td>
</tr>
<tr>
<td>Each additional pound or fraction of a pound</td>
<td>$0.95</td>
</tr>
</tbody>
</table>

Convert this table to a piecewise defined function that represents shipping costs for packages weighing between 0 and 4 pounds using x as the weight in pounds and C as the cost in dollars. Find the postage for a 3.25-pound package.

A) \[C(x) = \begin{cases}
0.35 & \text{if } 0 < x \leq 1 \\
0.70 & \text{if } 1 < x \leq 2 \\
1.05 & \text{if } 2 < x \leq 3 \\
1.40 & \text{if } 3 < x \leq 4
\end{cases} \]

cost for a 3.25 lb package: $1.40

B) \[C(x) = \begin{cases}
0.35 & \text{if } 0 < x \leq 1 \\
0.95 & \text{if } 1 < x \leq 2 \\
1.90 & \text{if } 2 < x \leq 3 \\
2.85 & \text{if } 3 < x \leq 4
\end{cases} \]

cost for a 3.25 lb package: $2.85

C) \[C(x) = \begin{cases}
0.35 & \text{if } 0 < x \leq 1 \\
0.35 + 0.95x & \text{if } 1 < x \leq 4
\end{cases} \]

cost for a 3.25 lb package: $3.44

D) \[C(x) = \begin{cases}
0.35 & \text{if } 0 < x \leq 1 \\
1.30 & \text{if } 1 < x \leq 2 \\
2.25 & \text{if } 2 < x \leq 3 \\
3.20 & \text{if } 3 < x \leq 4
\end{cases} \]

cost for a 3.25 lb package: $3.20

E) \[C(x) = \begin{cases}
0.35 & \text{if } 0 < x \leq 1 \\
0.35 + 0.95x & \text{if } 1 < x \leq 2 \\
0.35 + 1.90x & \text{if } 2 < x \leq 3 \\
0.35 + 2.85x & \text{if } 3 < x \leq 4
\end{cases} \]

cost for a 3.25 lb package: $9.61

Ans: D
The demand function for a product is given by \(p = \frac{180}{2 + 0.05x} \) where \(x \) is the number of units and \(p \) is the price in dollars. Graph this demand function for \(0 \leq x \leq 250 \), with \(x \) on the horizontal axis.

A)

B)

C)

D)
E) Ans: C
97. The demand function for a product is given by \(p = \frac{200}{2 + 0.1x} \) where \(x \) is the number of units and \(p \) is the price in dollars. The graph of this demand function for \(0 \leq x \leq 250 \), with \(x \) on the horizontal, axis is given below. Does the demand function ever reach 3?

A) no
B) yes
Ans: B

98. The given graph shows the cost \(C \), in thousands of dollars, of a production run for a product when \(x \) machines are used. Estimate the company's fixed cost of production to the nearest thousand dollars, and determine the number of machines that will result in maximum cost for the company.

A) fixed production cost: $4000
 maximum cost when 3 machines used
B) fixed production cost: $7000
 maximum cost when 3 machines used
C) fixed production cost: $3000
 maximum cost when 3 machines used
D) fixed production cost: $4000
 maximum cost when 5 machines used
E) fixed production cost: $3000
 maximum cost when 5 machines used
Ans: C
99. Determine whether the scatter plot should be modeled by a linear, power, quadratic, cubic, or quartic function.

\[\text{Ans: A} \]

100. Determine whether the scatter plot should be modeled by a linear, power, quadratic, cubic, or quartic function.

\[\text{Ans: C} \]
101. Determine whether the scatter plot should be modeled by a linear, power, quadratic, cubic, or quartic function.

A) linear
B) power
C) quadratic
D) cubic
E) quartic

Ans: E

102. Determine whether the scatter plot should be modeled by a linear, power, quadratic, cubic, or quartic function.

A) linear
B) power
C) quadratic
D) cubic
E) quartic

Ans: D
103. Find the equation of the linear function that is the best fit for the given data.

\[
\begin{array}{c|c|c}
0 & 1.9 \\
1 & 3.4 \\
2 & 5.2 \\
3 & 7.3 \\
4 & 9.1 \\
\end{array}
\]

A) \(y = 1.65x + 1.93 \)
B) \(y = 1.83x + 1.72 \)
C) \(y = 2.01x + 1.55 \)
D) \(y = 1.74x + 1.46 \)
E) \(y = 1.92x + 1.86 \)

Ans: B
104. Graph the linear function that models the data given in the table below.

<table>
<thead>
<tr>
<th>x</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-2.5</td>
<td>-1.0</td>
<td>0.5</td>
<td>2.0</td>
<td>3.5</td>
<td>5.0</td>
<td>6.5</td>
</tr>
</tbody>
</table>

A)

B)

C)

D)
105. Find the equation of the quadratic function that is the best fit for the given data.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-16.6</td>
</tr>
<tr>
<td>-1</td>
<td>-7.1</td>
</tr>
<tr>
<td>0</td>
<td>-2.5</td>
</tr>
<tr>
<td>1</td>
<td>-1.6</td>
</tr>
<tr>
<td>2</td>
<td>-4.2</td>
</tr>
<tr>
<td>3</td>
<td>-11.2</td>
</tr>
<tr>
<td>4</td>
<td>-22.5</td>
</tr>
</tbody>
</table>

A) $y = -1.91x^2 + 3.34x - 2.65$
B) $y = -1.81x^2 + 3.19x - 2.5$
C) $y = -2.21x^2 + 2.89x - 2.5$
D) $y = -2.11x^2 + 2.73x - 2.15$
E) $y = -2.01x^2 + 3.04x - 2.36$

Ans: E
106. Graph the quadratic function that models the data given in the table below.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>16</td>
<td>8</td>
<td>2</td>
<td>-2</td>
<td>-4</td>
<td>-4</td>
<td>-2</td>
</tr>
</tbody>
</table>

A)

B)

C)

D)
107. Find the equation of the cubic function that is the best fit for the given data.

\[\begin{array}{c|c}
 x & y \\
-4 & -116.1 \\
-3 & -57.3 \\
-2 & -22.9 \\
-1 & -5.6 \\
0 & -0.1 \\
1 & -1.5 \\
2 & -2.7 \\
\end{array} \]

A) \[y = 0.99x^3 - 3.02x^2 + 1.18x - 0.1 \]
B) \[y = 0.97x^3 - 3.08x^2 + 1.12x - 0.36 \]
C) \[y = 0.89x^3 - 3.3x^2 + 1.05x - 0.5 \]
D) \[y = 1.05x^3 - 3.24x^2 + 1.07x - 0.15 \]
E) \[y = 0.92x^3 - 2.93x^2 + 1.17x - 0.59 \]

Ans: B
108. Graph the cubic function that models the data given in the table below.

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>14</td>
<td>-2</td>
<td>-6</td>
<td>-4</td>
<td>-2</td>
<td>-6</td>
<td>-22</td>
</tr>
</tbody>
</table>

A)

B)

C)

D)
109. Find the equation of the quartic function that is the best fit for the given data.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.90</td>
</tr>
<tr>
<td>2</td>
<td>37.1</td>
</tr>
<tr>
<td>3</td>
<td>177.7</td>
</tr>
<tr>
<td>4</td>
<td>551.2</td>
</tr>
<tr>
<td>5</td>
<td>1333.6</td>
</tr>
<tr>
<td>6</td>
<td>2745.1</td>
</tr>
<tr>
<td>7</td>
<td>5057.6</td>
</tr>
</tbody>
</table>

A) \(y = 2.02x^4 + 0.66x^3 - 0.07x^2 - 3.34x + 6.6 \)
B) \(y = 1.82x^4 + 0.62x^3 - 0.07x^2 - 3.67x + 6.88 \)
C) \(y = 1.92x^4 + 0.69x^3 - 0.07x^2 - 3x + 6.74 \)
D) \(y = 2.12x^4 + 0.72x^3 - 0.06x^2 - 3.17x + 6.46 \)
E) \(y = 2.22x^4 + 0.59x^3 - 0.06x^2 - 3.5x + 6.32 \)

Ans: A
110. Graph the power function that models the data given in the table below.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0000</td>
</tr>
<tr>
<td>2</td>
<td>5.6569</td>
</tr>
<tr>
<td>3</td>
<td>10.3923</td>
</tr>
<tr>
<td>4</td>
<td>16.0000</td>
</tr>
<tr>
<td>5</td>
<td>22.3607</td>
</tr>
<tr>
<td>6</td>
<td>29.3939</td>
</tr>
</tbody>
</table>

A)

B)

C)

D)
E)

Ans: B
111. Determine what type of function best models the data given below, and find the equation that is the best fit for the data.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>−2.6</td>
</tr>
<tr>
<td>1</td>
<td>3.35</td>
</tr>
<tr>
<td>2</td>
<td>9.46</td>
</tr>
<tr>
<td>3</td>
<td>15.49</td>
</tr>
<tr>
<td>4</td>
<td>21.35</td>
</tr>
<tr>
<td>5</td>
<td>27.41</td>
</tr>
<tr>
<td>6</td>
<td>33.3</td>
</tr>
</tbody>
</table>

A) linear; $y = 5.9896x - 2.5746$
B) quadratic; $y = -0.0106x^2 + 6.0532x - 2.6276$
C) power; $y = \text{inf } x^{-\text{inf}}$
D) cubic; $y = -0.0014x^3 + 0.0019x^2 + 6.0254x - 2.6193$
E) quartic; $y = 0.002x^4 - 0.0255x^3 + 0.0911x^2 + 5.9239x - 2.609$
Ans: A

112. Determine what type of function best models the data given below, and find the equation that is the best fit for the data.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7.5</td>
</tr>
<tr>
<td>1</td>
<td>−15.85</td>
</tr>
<tr>
<td>2</td>
<td>−30.1</td>
</tr>
<tr>
<td>3</td>
<td>−34.95</td>
</tr>
<tr>
<td>4</td>
<td>−30.4</td>
</tr>
<tr>
<td>5</td>
<td>−16.25</td>
</tr>
<tr>
<td>6</td>
<td>7.7</td>
</tr>
</tbody>
</table>

A) linear; $y = -0.0179x - 15.9964$
B) quadratic; $y = 4.7298x^2 - 28.3964x + 7.6524$
C) power; $y = \text{inf } x^{\text{inf}}$
D) cubic; $y = 0.025x^3 + 4.5048x^2 - 27.8964x + 7.5024$
E) quartic; $y = 0.0004x^4 + 0.0205x^3 + 4.5216x^2 - 27.9156x + 7.5043$
Ans: B
113. The table shows the average earnings of year-round, full-time workers by gender and educational attainment in a certain country. Let x represent earnings for males and y represent earnings for females, and find a linear model that expresses women’s annual earnings as a function of men’s. Interpret the slope of the linear model.

<table>
<thead>
<tr>
<th>Educational Attainment</th>
<th>Average Annual Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
</tr>
<tr>
<td>Less than 9th grade</td>
<td>$12,525</td>
</tr>
<tr>
<td>Some high school</td>
<td>$13,475</td>
</tr>
<tr>
<td>High school graduate</td>
<td>$20,890</td>
</tr>
<tr>
<td>Some college</td>
<td>$21,420</td>
</tr>
<tr>
<td>Associate’s degree</td>
<td>$25,285</td>
</tr>
<tr>
<td>Bachelor’s degree or more</td>
<td>$41,675</td>
</tr>
</tbody>
</table>

A) $y = 1.247x - 939.226$
 slope: females earn $1247 for each $1000 males earn

B) $y = 1.247x - 939.226$
 slope: the average difference in yearly male and female earnings is $1247

C) $y = 0.766x + 1548.623$
 slope: females earn $766 for each $1000 males earn

D) $y = 0.766x + 1548.623$
 slope: the average difference in yearly male and female earnings is $766

E) $y = 0.766x + 1548.623$
 slope: the average of male and female earnings increases by an average of $766 for each level of educational attainment

Ans: C
114. The table gives the median household income (in 2005 dollars) for two cities in various years. Let \(x \) represent the median household income for citizens of city A and \(y \) represent the corresponding median household income for citizens of city B. Find a linear model that expresses the median household income for citizens in city B as a function of the median household income for citizens of city B. Interpret the slope of the linear model.

Median Household Income

(2005 dollars)

<table>
<thead>
<tr>
<th>Year</th>
<th>City A</th>
<th>City B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>$21,400</td>
<td>$18,900</td>
</tr>
<tr>
<td>1990</td>
<td>$22,800</td>
<td>$20,600</td>
</tr>
<tr>
<td>1995</td>
<td>$26,000</td>
<td>$25,400</td>
</tr>
<tr>
<td>2000</td>
<td>$27,200</td>
<td>$27,500</td>
</tr>
<tr>
<td>2005</td>
<td>$30,400</td>
<td>$31,100</td>
</tr>
</tbody>
</table>

A) \(y = 0.715x + 7898.039 \)
 slope: median household income is growing at the same rate for city A as it is for city B.

B) \(y = 0.715x + 7898.039 \)
 slope: median household income is growing at the same rate for city A as it is for city B.

C) \(y = 0.715x + 7898.039 \)
 slope: median household income is growing at the same rate for city A as it is for city B.

D) \(y = 1.392x - 10882.042 \)
 slope: median household income is growing faster for city A than it is for city B.

E) \(y = 1.392x - 10882.042 \)
 slope: median household income is growing slower for city A than it is for city B.

Ans: D
115. Suppose the IQ scores (rounded to the nearest 10) for a group of people are summarized in the table below. Find the quadratic function that best fits the data, using x as the IQ score and y as the number of people in the group with that IQ score. Use a graphing utility to estimate the IQ score of the maximum number of individuals according to the model.

<table>
<thead>
<tr>
<th>IQ Score</th>
<th>Number of People</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>51</td>
</tr>
<tr>
<td>80</td>
<td>73</td>
</tr>
<tr>
<td>90</td>
<td>93</td>
</tr>
<tr>
<td>100</td>
<td>88</td>
</tr>
<tr>
<td>110</td>
<td>77</td>
</tr>
<tr>
<td>120</td>
<td>47</td>
</tr>
<tr>
<td>130</td>
<td>16</td>
</tr>
</tbody>
</table>

A) $y = -0.06x^2 + 11.93x - 476.93$
 The model predicts that the maximum number of people have an IQ score of approximately 95.

B) $y = -0.06x^2 + 11.93x - 476.93$
 The model predicts that the maximum number of people have an IQ score of approximately 90.

C) $y = -0.07x^2 + 11.69x - 500.77$
 The model predicts that the maximum number of people have an IQ score of approximately 90.

D) $y = -0.07x^2 + 11.69x - 500.77$
 The model predicts that the maximum number of people have an IQ score of approximately 95.

E) $y = -0.07x^2 + 13.12x - 500.77$
 The model predicts that the maximum number of people have an IQ score of approximately 90.

Ans: A
116. Suppose that the following table gives the number of near-collisions on the runways of the nation's airports. With $x = 0$ representing 1990, find a quadratic function that models the data in the chart. Round numerical values in your answer to four decimal places. Depending on the technology you use, your answer may be slightly different than the correct answer shown.

<table>
<thead>
<tr>
<th>Year</th>
<th>Runway near-hits in USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>300</td>
</tr>
<tr>
<td>1991</td>
<td>312</td>
</tr>
<tr>
<td>1992</td>
<td>320</td>
</tr>
<tr>
<td>1993</td>
<td>325</td>
</tr>
<tr>
<td>1994</td>
<td>340</td>
</tr>
<tr>
<td>1995</td>
<td>365</td>
</tr>
<tr>
<td>1996</td>
<td>378</td>
</tr>
<tr>
<td>1997</td>
<td>420</td>
</tr>
<tr>
<td>1998</td>
<td>455</td>
</tr>
<tr>
<td>1999</td>
<td>481</td>
</tr>
<tr>
<td>2000</td>
<td>498</td>
</tr>
</tbody>
</table>

A) $y = 1.5979x^2 + 4.9210x + 300.7413$

B) $y = 1.5979x^2 - 4.9210x + 300.7413$

C) $y = 3.8991x^2 + 4.9210x + 300.7427$

D) $y = 2.8335x^2 + 10.0440x + 303.8647$

E) $y = 2.8335x^2 - 10.0440x + 303.8647$

Ans: A
117. The table that follows gives the population of a city. Find the power function that best fits the data, with x equal to the number of years past 1950. According to the model, will the city's population be greater than 1400 by the year 2010?

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>604</td>
</tr>
<tr>
<td>1970</td>
<td>893</td>
</tr>
<tr>
<td>1980</td>
<td>1195</td>
</tr>
<tr>
<td>1990</td>
<td>1223</td>
</tr>
<tr>
<td>2000</td>
<td>1244</td>
</tr>
</tbody>
</table>

A) $y = 5.357x^{0.474}$
The model predicts that the population will be greater than 1400.

B) $y = 212.109x^{0.474}$
The model predicts that the population will be greater than 1400.

C) $y = 5.357x^{0.526}$
The model predicts that the population will not be greater than 1400.

D) $y = 212.109x^{0.526}$
The model predicts that the population will not be greater than 1400.

E) $y = 604x^{0.5}$
The model predicts that the population will be greater than 1400.

Ans: B
118. Suppose that the following table shows the number of millions of people in the United States who lived below the poverty level for selected years. Find a cubic model that approximately fits the data, using x as the number of years after 1960. Round numerical values in your answer to four decimal places. Depending on the technology you use, your answer may be slightly different than the correct answer shown.

<table>
<thead>
<tr>
<th>Year</th>
<th>Persons Living Below the Poverty Level (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>45.4</td>
</tr>
<tr>
<td>1970</td>
<td>41.3</td>
</tr>
<tr>
<td>1975</td>
<td>49.2</td>
</tr>
<tr>
<td>1980</td>
<td>59.2</td>
</tr>
<tr>
<td>1989</td>
<td>71.9</td>
</tr>
<tr>
<td>1990</td>
<td>69.1</td>
</tr>
<tr>
<td>1992</td>
<td>70.3</td>
</tr>
<tr>
<td>1996</td>
<td>71.2</td>
</tr>
<tr>
<td>2000</td>
<td>61.0</td>
</tr>
<tr>
<td>2002</td>
<td>43.2</td>
</tr>
</tbody>
</table>

A) $y = -0.0087x^3 + 0.4916x^2 - 4.3423x + 45.6030$
B) $y = 0.0067x^3 - 0.3916x^2 + 5.8383x + 47.9356$
C) $y = -0.0067x^3 + 0.3916x^2 - 5.8383x + 47.9356$
D) $y = -0.0043x^3 + 0.2370x^2 - 2.3883x + 45.6042$
E) $y = 0.0043x^3 - 0.2370x^2 + 2.3883x + 45.6042$

Ans: D
119. The table below shows the national expenditures for health care in a certain country for selected years. Find a power model and a linear model for the data where \(x \) is the number of years after 1950. Which of the models seems to be the best to use if you are interested in finding the health care costs near the year 1990?

<table>
<thead>
<tr>
<th>Year</th>
<th>National Expenditures for Health Care (in billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>$21.7</td>
</tr>
<tr>
<td>1970</td>
<td>$70.5</td>
</tr>
<tr>
<td>1980</td>
<td>$245</td>
</tr>
<tr>
<td>1990</td>
<td>$697.9</td>
</tr>
<tr>
<td>2000</td>
<td>$1428.5</td>
</tr>
</tbody>
</table>

A) \(y = 0.039x^{2.630} \)
 \(y = 34.410x - 539.58 \)
 The power model gives more accurate results near the year 1990.

B) \(y = 0.039x^{2.630} \)
 \(y = 34.410x - 539.58 \)
 The linear model gives more accurate results near the year 1990.

C) \(y = 21.7x^{1.370} \)
 \(y = 34.410x - 67639.08 \)
 The power model gives more accurate results near the year 1990.

D) \(y = 21.7x^{1.370} \)
 \(y = 34.410x - 67639.08 \)
 The linear model gives more accurate results near the year 1990.

E) \(y = 697.9x^{1.370} \)
 \(y = 34.410x + 697.9 \)
 The power model gives more accurate results near the year 1990.

Ans: A

120. Suppose the following table gives the U.S. population, in millions, for selected years, with projections to 2050. Find a linear model that approximately fits the data, with \(x \) equal to the number of years past 1960. Round numerical values in your answer to three decimal places. Depending on the technology you use, your answer may be slightly different than the correct answer shown.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Populations (millions)</td>
<td>180.671</td>
<td>215.635</td>
<td>228.738</td>
<td>249.948</td>
<td>288.334</td>
</tr>
</tbody>
</table>

A) \(y = 2.593x + 181.805 \)
B) \(y = 3.377x + 183.261 \)
C) \(y = 2.593x - 181.805 \)
D) \(y = 3.377x - 183.261 \)
E) \(y = 4.050x - 180.349 \)

Ans: A
121. The table gives the percent of the population of a certain city that was foreign born in the given year. Find a cubic function that best fits the data where x is the number of years after 1900 and y is equal to the percent. By trial and error, estimate the year the model predicts that the foreign-born population will be 100%.

<table>
<thead>
<tr>
<th>Year</th>
<th>Percent Foreign Born</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>11.2</td>
</tr>
<tr>
<td>1910</td>
<td>15.3</td>
</tr>
<tr>
<td>1920</td>
<td>9.9</td>
</tr>
<tr>
<td>1930</td>
<td>6</td>
</tr>
<tr>
<td>1940</td>
<td>9.1</td>
</tr>
<tr>
<td>1950</td>
<td>15.4</td>
</tr>
</tbody>
</table>

A) $y = 0.0007x^3 - 0.0475x^2 + 0.6087x + 11.7135$
foreign born population will be 100% in 1965.

B) $y = 0.0007x^3 - 4.2697x^2 + 8203.4064x - 5253432.2667$
foreign born population will be 100% in 1975.

C) $y = 0.0007x^3 - 0.0475x^2 + 0.6087x + 11.7135$
foreign born population will be 100% in 1975.

D) $y = 0.0007x^3 - 4.2697x^2 + 8203.4064x - 5253432.2667$
foreign born population will be 100% in 1965.

E) $y = 0.0007x^3 - 0.0475x^2 + 0.6087x + 11.7135$
foreign born population will be 100% in 1985.

Ans: C