This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.
Contents

Preface vi
Human Anatomy and Physiology Laboratory Safety Procedures viii
Trends in Instrumentation x

Part One: Exercises

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Language of Anatomy</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Organ Systems Overview</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>The Microscope</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>The Cell: Anatomy and Division</td>
<td>18</td>
</tr>
<tr>
<td>5A</td>
<td>The Cell: Transport Mechanisms and Permeability–Wet Lab</td>
<td>24</td>
</tr>
<tr>
<td>6A</td>
<td>Classification of Tissues</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>The Integumentary System</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>Classification of Covering and Lining Membranes</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>Overview of the Skeleton: Classification and Structure of Bones and Cartilages</td>
<td>51</td>
</tr>
<tr>
<td>10</td>
<td>The Axial Skeleton</td>
<td>57</td>
</tr>
<tr>
<td>11</td>
<td>The Appendicular Skeleton</td>
<td>65</td>
</tr>
<tr>
<td>12</td>
<td>The Fetal Skeleton</td>
<td>73</td>
</tr>
<tr>
<td>13</td>
<td>Articulations and Body Movements</td>
<td>76</td>
</tr>
<tr>
<td>14</td>
<td>Microscopic Anatomy and Organization of Skeletal Muscle</td>
<td>82</td>
</tr>
<tr>
<td>15</td>
<td>Gross Anatomy of the Muscular System</td>
<td>87</td>
</tr>
<tr>
<td>16A</td>
<td>Skeletal Muscle Physiology: Frogs and Human Subjects</td>
<td>96</td>
</tr>
<tr>
<td>17</td>
<td>Histology of Nervous Tissue</td>
<td>105</td>
</tr>
<tr>
<td>18A</td>
<td>Neurophysiology of Nerve Impulses: Wet Lab</td>
<td>111</td>
</tr>
<tr>
<td>19</td>
<td>Gross Anatomy of the Brain and Cranial Nerves</td>
<td>116</td>
</tr>
<tr>
<td>20</td>
<td>Electroencephalography</td>
<td>124</td>
</tr>
<tr>
<td>21</td>
<td>Spinal Cord, Spinal Nerves, and the Autonomic Nervous System</td>
<td>128</td>
</tr>
<tr>
<td>22</td>
<td>Human Reflex Physiology</td>
<td>135</td>
</tr>
<tr>
<td>23</td>
<td>General Sensation</td>
<td>142</td>
</tr>
<tr>
<td>24</td>
<td>Special Senses: Vision</td>
<td>146</td>
</tr>
<tr>
<td>25</td>
<td>Special Senses: Hearing and Equilibrium</td>
<td>155</td>
</tr>
<tr>
<td>26</td>
<td>Special Senses: Olfaction and Taste</td>
<td>162</td>
</tr>
<tr>
<td>27</td>
<td>Functional Anatomy of the Endocrine Glands</td>
<td>166</td>
</tr>
</tbody>
</table>
Exercise 28A: Role of Thyroid Hormone, Pituitary Hormone, Insulin, and Epinephrine: Wet Lab 172
Exercise 29A: Blood 179
Exercise 30: Anatomy of the Heart 188
Exercise 31: Conduction System of the Heart and Electrocardiography 194
Exercise 32: Anatomy of Blood Vessels 198
Exercise 33A: Human Cardiovascular Physiology: Blood Pressure and Pulse Determinations 205
Exercise 34A: Frog Cardiovascular Physiology: Wet Lab 214
Exercise 35A: The Lymphatic System and Immune Response 222
Exercise 36: Anatomy of the Respiratory System 228
Exercise 37A: Respiratory System Physiology 234
Exercise 38: Anatomy of the Digestive System 243
Exercise 39A: Chemical and Physical Processes of Digestion: Wet Lab 251
Exercise 40: Anatomy of the Urinary System 258
Exercise 41A: Urinalysis 264
Exercise 42: Anatomy of the Reproductive System 269
Exercise 43: Physiology of Reproduction: Gametogenesis and the Female Cycles 276
Exercise 44: Survey of Embryonic Development 282
Exercise 45: Principles of Heredity 288
Exercise 46: Surface Anatomy Roundup 295

Part Two: Cat Dissection Exercises
Dissection Exercise 1: Dissection and Identification of Cat Muscles 298
Dissection Exercise 2: Dissection of Cat Spinal Nerves 301
Dissection Exercise 3: Identification of Selected Endocrine Organs of the Cat 302
Dissection Exercise 4: Dissection of the Blood Vessels of the Cat 304
Dissection Exercise 5: The Main Lymphatic Ducts of the Cat 306
Dissection Exercise 6: Dissection of the Respiratory System of the Cat 307
Dissection Exercise 7: Dissection of the Digestive System of the Cat 308
Dissection Exercise 8: Dissection of the Urinary System of the Cat 310
Dissection Exercise 9: Dissection of the Reproductive System of the Cat 312

Part Three: Fetal Pig Dissection Exercises
Dissection Exercise 1: Dissection and Identification of Fetal Pig Muscles 314
Dissection Exercise 2: Dissection of the Spinal Cord and Spinal Nerves of the Fetal Pig 317
Dissection Exercise 3: Identification of Selected Endocrine Organs of the Fetal Pig 318
Dissection Exercise 4: Dissection of the Blood Vessels and Main Lymphatic Ducts of the Fetal Pig 320
Dissection Exercise 5: Dissection of the Respiratory System of the Fetal Pig 322
Dissection Exercise 6: Dissection of the Digestive System of the Fetal Pig 324
Dissection Exercise 7: Dissection of the Urinary System of the Fetal Pig 326
Dissection Exercise 8: Dissection of the Reproductive System of the Fetal Pig 328

Part Four: Rat Dissection Exercises
Dissection Exercise 1: Dissection and Identification of Rat Muscles 330
Dissection Exercise 2: Identification of Selected Endocrine Organs of the Rat 333
Dissection Exercise 3: Dissection of the Blood Vessels of the Rat 335
Dissection Exercise 4: Dissection of the Respiratory System of the Rat 337
Dissection Exercise 5: Dissection of the Digestive System of the Rat 339
Dissection Exercise 6: Dissection of the Urinary System of the Rat 341
Dissection Exercise 7: Dissection of the Reproductive System of the Rat 343

Part Five: PhysioEx™ Exercises
Exercise 5B Cell Transport Mechanisms and Permeability: Computer Simulation 345
Exercise 16B Skeletal Muscle Physiology 351
Exercise 18B Neurophysiology of Nerve Impulses: Computer Simulation 357
Exercise 28B Endocrine System Physiology: Computer Simulation 362
Exercise 29B Blood Analysis: Computer Simulation 369
Exercise 33B Cardiovascular Dynamics: Computer Simulation 375
Exercise 34B Frog Cardiovascular Physiology: Computer Simulation 381
Exercise 37B Respiratory System Mechanics: Computer Simulation 387
Exercise 39B Chemical and Physical Processes of Digestion: Computer Simulation 393
Exercise 41B Renal System Physiology: Computer Simulation 399
Exercise 47 Acid-Base Balance: Computer Simulation 405

PhysioEx™ Frequently Asked Questions 410

Appendices
Appendix A List of Supply Houses 412
Appendix B Guide to Multimedia Resource Distributors 413
Organization of this Instructor Guide

Each exercise in this manual includes detailed directions for setting up the laboratory, comments on the exercise (including common problems encountered), some additional or alternative activities, and answers to the new pre-lab quizzes and activity questions that appear in the text of the lab manual. (Answers to questions regarding student observations and data have not been included.)

Answers to the lab manual Review Sheets have been integrated to follow each exercise. In some cases several acceptable answers have been provided. Answers to the dissection review questions are located in this guide with the dissection exercises.

Directions for use of the kymograph have been removed from the lab manual but appear in Exercise 16 in the Instructor Guide. Several complete exercises incorporating PowerLab®, iWorx®, and Intelitool® computer data acquisition and compilation systems, as well as instructions for the BIOPAC® software and 2-channel unit, can be downloaded from the Instructor Resource section of the new myA&P website for the Human Anatomy & Physiology Laboratory Manuals, and may be duplicated for student use.

The time allotment at the beginning of each exercise, indicated by the hourglass icon, is an estimate of the amount of in-lab time it will take to complete the exercise, unless noted otherwise. If you are using multimedia, add the running time to the time allotted for a given exercise.

Suggested multimedia resources, indicated by the computer icon, are listed for each exercise. Format options include VHS, CD-ROM, DVD, Website, and streaming webcast. Information includes title, format, running time, and distributor. The key to distributor abbreviations is in the Guide to Multimedia Resource Distributors, Appendix B. Street and Web addresses of the distributors are also listed in Appendix B.

Each exercise includes directions for preparing needed solutions, indicated by the test tube icon.

Trends in Instrumentation includes information about laboratory techniques and equipment, including information on PowerLab®, iWorx®, and Intelitool®. There are some suggestions about additional investigations using techniques and equipment not described in the laboratory manual.

The Laboratory Materials list in each exercise is intended as a convenience when ordering. Amounts listed assume a laboratory class of 24 students working in groups of four. Information about several supply houses appears in Appendix A. Note: The information provided is not an exhaustive list of suppliers.

Laboratory Safety

Always establish safety procedures for the laboratory. Students should be given a list of safety procedures at the beginning of each semester and should be asked to locate exits and safety equipment. Suggested procedures may be found on pp. viii–ix, along with a student acknowledgment form. These pages may be copied and given to the students. Signed student acknowledgment forms should be collected by the instructor once the safety procedures have been read and explained and the safety equipment has been located.

Special precautions must be taken for laboratories using body fluids. Students should use only their own fluids or those provided by the instructor. In many cases, suitable alternatives have been suggested. All reusable glassware and plasticware should be soaked in 10% bleach solution for 2 hours and then washed with laboratory detergent and autoclaved if possible. Disposable items should be placed in an autoclave bag for 15 minutes at 121°C and 15 pounds of pressure to ensure sterility. After autoclaving, items may be discarded in any disposal facility.
Disposal of dissection materials and preservatives should be arranged according to state regulations. Be advised that regulations vary from state to state. Contact your state Department of Health or Environmental Protection Agency or their counterparts for advice. Keep in mind that many dissection specimens can be ordered in formaldehyde-free preservatives; however, even formaldehyde-free specimens may not be accepted by local landfill organizations.

Acknowledgments

Thanks to the team at Benjamin Cummings: Serina Beauparlant, Editor-in-Chief; Nicole Graziano, Associate Editor; Stacey Weinberger, Senior Manufacturing Buyer; and Derek Perrigo, Marketing Manager. Many thanks also to Michele Mangelli, Production Manager, and Leslie Austin, Production Supervisor.

Susan J. Mitchell
1. Upon entering the laboratory, locate exits, fire extinguisher, fire blanket, chemical shower, eye wash station, first aid kit, broken glass containers, and cleanup materials for spills.

2. Do not eat, drink, smoke, handle contact lenses, store food, or apply cosmetics or lip balm in the laboratory. Restrain long hair, loose clothing, and dangling jewelry.

3. Students who are pregnant, taking immunosuppressive drugs, or who have any other medical condition (e.g., diabetes, immunological defect) that might necessitate special precautions in the laboratory must inform the instructor immediately.

4. Wearing contact lenses in the laboratory is inadvisable because they do not provide eye protection and may trap material on the surface of the eye. If possible, wear regular eyeglasses instead.

5. Use safety glasses in all experiments involving liquids, aerosols, vapors, and gases.

6. Decontaminate work surfaces at the beginning and end of every laboratory period, using a commercially prepared disinfectant or 10% bleach solution. After labs involving dissection of preserved material, use hot soapy water or disinfectant.

7. Keep liquids away from the edge of the lab bench to help avoid spills. Clean up spills of viable materials using disinfectant or 10% bleach solution.

8. Properly label glassware and slides.

9. Use mechanical pipeting devices; mouth pipeting is prohibited.

10. Wear disposable gloves when handling blood and other body fluids, mucous membranes, or nonintact skin, and/or when touching items or surfaces soiled with blood or other body fluids. Change gloves between procedures. Wash hands immediately after removing gloves. (Note: Cover open cuts or scrapes with a sterile bandage before donning gloves.)

11. Place glassware and plasticware contaminated by blood and other body fluids in a disposable autoclave bag for decontamination by autoclaving or place them directly into a 10% bleach solution before reuse or disposal. Place disposable materials such as gloves, mouthpieces, swabs, and toothpicks that come into contact with body fluids into a disposable autoclave bag, and decontaminate before disposal.

12. To help prevent contamination by needle stick injuries, use only disposable needles and lancets. Do not bend needles and lancets. Needles and lancets should be placed promptly in a labeled puncture-resistant leakproof container and decontaminated, preferably by autoclaving.

14. Report all spills or accidents, no matter how minor, to the instructor.

15. Never work alone in the laboratory.

16. Remove protective clothing and wash hands before leaving the laboratory.
Laboratory Safety Acknowledgment Form

I hereby certify that I have read the safety recommendations provided for the laboratory and have located all of the safety equipment listed in Safety Procedure Number 1 of these procedures.

Student’s Name

Course ... Date ____________

Instructor’s Name ...

Adapted from:

Trends in Instrumentation

Robert Anthony and Alan Wade, Triton College
Peter Zao, North Idaho College
Susan J. Mitchell, Onondaga Community College

This section is designed for instructors interested in incorporating additional laboratory technologies and instrumentation into their anatomy and physiology courses. The following techniques will introduce students to some standard approaches and instrumentation currently used in clinical and research facilities. Although these techniques are used in various biology and chemistry laboratory courses, many students in basic anatomy and physiology are not routinely introduced to these skills. Rather than detailing specific laboratory procedures, this discussion will provide insight into some of the options for bringing technology into the introductory anatomy and physiology laboratory.

One of the standard methods available to medical technicians and researchers is computerized data acquisition. Currently available computer packages can measure and analyze various aspects of cardiac, reflex, muscle, and respiratory physiology. Other standard methods include chromatography, spectrophotometry, and electrophoresis. Applications of available computer data acquisition systems and clinical technologies for use in an anatomy and physiology laboratory are listed on the following pages. Included in each application are relevant exercises in the laboratory manual and a brief description of each possible application. A list of companies offering appropriate products is included in Appendix A.

Computerized Data Acquisition

Computerized equipment is commonly used to monitor patients in today’s allied health areas. We have found that students appreciate the brief exposure to computers in our labs and begin to realize that a computer is not an intimidating machine, but a tool that allows them to perform specific tasks. Incorporating computer-based exercises into the lab also generates increased interest because most students realize that they will be using computers in their chosen professions.

Analog-to-digital converters can be used to create customized physiological data collection systems. Easy to use computer data acquisition systems include BIOPAC®, PowerLab®, Intelitool®, iWorx®, and Vernier® systems. The packages are designed for use in college-level courses and require minimal computer experience.

Directions for BIOPAC® are included in the lab manual. Exercises using PowerLab®, iWorx®, and Intelitool® can be downloaded from the Instructor Resource section of the myA&P companion website for the lab manuals at www.myaandp.com. The Vernier system can be easily adapted to sections of Exercises 31 and 31A.

General Tips for Computer Data Acquisition Systems

Use in the Laboratory

The following ideas are general guidelines designed as an introduction to the operation of computer acquisition systems. Each system contains the software, equipment, and basic instructions needed to conduct the experiments on a computer.

Starting the Laboratory

- Prepare the laboratory for a computer-assisted data acquisition exercise by connecting the transducers and cables to the computer.
- Run through each exercise yourself so that you have a good idea of how much time is required to complete the activities in the given lab time period.
• You may wish to start the program so that the main menu is visible as the students sit down to work. If computer novices are left to start and prepare the system by themselves, their initial frustration may waste valuable lab time and detract from the experience.
• Once the program menu is up, students should be able to follow the exercise procedures without difficulty.
• It may be helpful to have an introductory lab designed to introduce the students to the general operation of the system.

Exercises Based on the PowerLab® System
Laboratory Exercises with PowerLab® instructions are available for download from the Instructor Resource section of myA&P for the following lab exercises:

Exercise 16A Skeletal Muscle Physiology: Frogs and Human Subjects
Exercise 22 Human Reflex Physiology
Exercise 31 Conduction System of the Heart and Electrocardiography
Exercise 33A Human Cardiovascular Physiology: Blood Pressure and Pulse Determinations
Exercise 34A Frog Cardiovascular Physiology: Wet Lab
Exercise 37A Respiratory System Physiology

Comments and tips specific to each exercise are included in the instructions.

Exercises Based on iWorx®
Laboratory Exercises with iWorx® instructions are available for download from the Instructor Resource section of myA&P for the following lab exercises:

Exercise 16A Electromyography in a Human Subject Using iWorx®
Exercise 20 Electroencephalography Using iWorx®
Exercise 22 Measuring Reaction Time Using iWorx®
Exercise 31 Electrocardiography Using iWorx®
Exercise 33A Measuring Pulse Using iWorx®
Exercise 34A Recording Baseline Frog Heart Activity
Exercise 37A Measuring Respiratory Variations

Exercises Based on Intelitool® Systems
Laboratory exercises with Intelitool® instructions are available for download from the Instructor Resource section of myA&P for the following lab exercises:

Exercise 16A Muscle Physiology
Exercise 22 Human Reflex Physiology
Exercise 31 Conduction System of the Heart and Electrocardiography
Exercise 37A Respiratory System Physiology

Comments and tips specific to each exercise are included on a separate Tips for Instructors page preceding each exercise.

Exercises in Cell Physiology and Clinical Chemistry
Modern cell physiology lab exercises frequently involve biochemical analysis of cellular components and products. A number of techniques can be used to detect and quantify the constituents of cells and body fluids.
Some of the more commonly used clinical and research techniques include chromatography, spectrophotometry, and electrophoresis.¹

Chromatography

Exercise 4: The Cell: Anatomy and Division Introduce molecular separation techniques when discussing the cell (or macromolecules).

Exercise 29: Blood Separate protein and lipid components during blood analysis.

Application

Chromatographic techniques have a number of applications in cell physiology and chemistry. Chromatography is used for separation and identification of components in mixtures containing amino acids, nucleic acids, sugars, vitamins, steroids, antibiotics, and other drugs.

The major forms of chromatography for the college physiology laboratory include thin-layer, paper, column, gas-liquid, and high-performance liquid chromatography. Descriptions of these procedures and their clinical applications can be found in a number of clinical method manuals.²

Gas and high-performance liquid chromatography offer the greatest sensitivity and quantitative ability, but the high initial investment usually makes these systems prohibitive unless they are already in place.

Thin-layer and paper chromatography are economical, and they can be performed with a minimum of equipment. Both methods can be used as qualitative or semiquantitative screening techniques to detect the presence of both endogenous and exogenous compounds.³

An example of a clinically significant screening test is the determination by thin-layer chromatography of abnormal levels of certain amino acids that are associated with genetic diseases affecting metabolism. The disorders phenylketonuria, alkaptonuria, and homocystinuria result in abnormal levels of phenylalanine, homogentisic acid, and methionine, respectively, in the urine and blood. The sample and standards are applied to a thin-layer plate coated with cellulose acetate, or a silica gel, or to a Whatman #4 chromatography paper, and run in a butanol/acetic acid/water solvent. For visualization and identification of amino acids, an indicator such as ninhydrin may be used. The color intensity for the appropriate amino acids can be compared to normal values.

Spectrophotometry

Exercise 29A: Blood Analyze protein or lipid composition, or enzyme hydrolysis.

Exercise 41A: Urinalysis Analyze various substances present in urine.

Exercise 39A: Chemical and Physical Processes of Digestion Quantitative spectrophotometric analysis of enzyme hydrolysis.

Application

Spectrophotometry is a common procedure used in clinical and research settings for determining concentrations of substances in solution, based on the amount of radiant energy transmitted through or absorbed by a substance in solution. Spectrophotometric measurements include total protein, total lipid, cholesterol, lipoprotein, and hemoglobin.

Spectrophotometry can also be used as a quantitative measure of enzymatic hydrolysis using commercially available colorigenic substrates. Most determinations in spectrophotometry utilize wavelengths in visible or ultraviolet ranges. For a more detailed description of the theory of spectrophotometry and use of the equipment, refer to a biochemistry or clinical methods manual.

¹ Due to the hazards associated with the laboratory use of human body fluids, it may be advisable to avoid using student-drawn blood samples for analysis. There are a wide variety of commercially available blood components, both normal and abnormal, as well as blood component standards.

Diagnostic kits (for specific diseases) include:

1. Bilirubin (liver disease)
2. Total cholesterol and HDL cholesterol (atherosclerosis)
3. Creatine kinase (striated muscle damage)
4. Hemoglobin (anemia)
5. Creatinine (kidney disease)

Electrophoresis

Exercise 29A: Blood Analyze protein and lipid components of blood.

Exercise 45: Principles of Heredity DNA fingerprinting systems, comparison of adult and sickle-cell hemoglobin.

Application

Electrophoretic techniques, which demonstrate the migration and separation of charged solutes in an electrical field, have many important applications in cell and molecular biology. The most commonly used techniques involve zone electrophoresis, in which migration occurs within a semisolid support medium. In a majority of these procedures, agarose, polyacrylamide, or sodium dodecyl sulfate gels are used as the support medium. Sample migration can be horizontal or vertical, depending on the type of apparatus. Directions for agarose gel separation of hemoglobin can be found in Exercise 45 of the laboratory manual.

An increasing number of supply companies are recognizing the importance of studies in molecular biology and their impact on the study of cell physiology and human disease. The companies are becoming involved with biotechnology education by offering lab systems that are designed to introduce the methods of molecular biology and biotechnology to students at the pre-college and college levels. These systems are often in kit form and facilitate hands-on experience with a variety of important procedures. Some of the experimental systems available are:

1. Molecular weight determination (proteins)
2. Separation and identification of serum proteins
3. Cardiac risk assessment—analysis of lipoproteins
4. DNA fingerprinting—restriction fragmentation patterns

Sources of Equipment and Reagents

Supplies for the biochemical techniques described in the above section can be obtained from the supply houses listed in Appendix A. The list is by no means complete but includes companies that are familiar to most educators. The Intelitool® products are best obtained directly from the company rather than through another vendor, as delivery times are much quicker.
The Language of Anatomy

If time is a problem, most of this exercise can be done as an out-of-class assignment.

Time Allotment: 1/2 hour (in lab).

A.D.A.M.® Interactive Anatomy 4.0 (AIA: CD-ROM, DVD)

Laboratory Materials

Ordering information is based on a lab size of 24 students, working in groups of 4. A list of supply house addresses appears in Appendix A.

1–2 human torso models
2 human skeletons, one male and one female
3–4 preserved kidneys (sheep)
Scalpels
Gelatin-spaghetti molds

Advance Preparation

1. Set out human torso models and have articulated skeletons available.
2. Obtain three preserved kidneys (sheep kidneys work well). Cut one in transverse section, one in longitudinal section (usually a sagittal section), and leave one uncut. Label the kidneys and put them in a demonstration area. You may wish to add a fourth kidney to demonstrate a frontal section.
3. The day before the lab, prepare gelatin or Jell-O® using slightly less water than is called for and cook the spaghetti until it is al dente. Pour the gelatin into several small molds and drop several spaghetti strands into each mold. Refrigerate until lab time.
4. Set out gelatin-spaghetti molds and scalpel.

Comments and Pitfalls

1. Students will probably have the most trouble understanding proximal and distal, often confusing these terms with superior and inferior. They also find the terms anterior/ventral and posterior/dorsal confusing because these terms refer to the same directions in humans, but different directions in four-legged animals. Other than that there should be few problems.

Answers to Pre-Lab Quiz (p. 1)

1. false 4. b, sagittal
2. axial 5. cranial, vertebral
3. b, toward or at the body surface 6. Heart
Answers to Activity Questions

Activity 2: Practicing Using Correct Anatomical Terminology (p. 4)

The wrist is **proximal** to the hand.
The trachea (windpipe) is **anterior** or **ventral** to the spine.
The brain is **superior** or **cephalad** to the spinal cord.
The kidneys are **inferior** or **caudal** to the liver.
The nose is **medial** to the cheekbones.
The thumb is **lateral** to the ring finger.
The thorax is **superior** or **cephalad** to the abdomen.
The skin is **superficial** to the skeleton.

Activity 4: Identifying Organs in the Abdominopelvic Cavity (p. 9)

Name two organs found in the left upper quadrant: stomach, spleen, large intestine
Name two organs found in the right lower quadrant: small intestine, large intestine, appendix
What organ is divided into identical halves by the median plane line? urinary bladder
The Language of Anatomy

Surface Anatomy

1. Match each of the following descriptions with a key equivalent, and record the key letter or term in front of the description.

 Key: a. buccal c. cephalic e. patellar
 b. calcaneal d. digital f. scapular

 a; buccal 1. cheek e; patellar 4. anterior aspect of knee
 d; digital 2. pertaining to the fingers b; calcaneal 5. heel of foot
 f; scapular 3. shoulder blade region c; cephalic 6. pertaining to the head

2. Indicate the following body areas on the accompanying diagram by placing the correct key letter at the end of each line.

 Key:
 a. abdominal
 b. antecubital
 c. brachial
 d. cervical
 e. crural
 f. femoral
 g. fibular
 h. gluteal
 i. lumbar
 j. occipital
 k. oral
 l. popliteal
 m. pubic
 n. sural
 o. thoracic
 p. umbilical

3. Classify each of the terms in the key of question 2 above into one of the large body regions indicated below. Insert the appropriate key letters on the answer blanks.

 b, c, e, f, g, l, n 1. appendicular
 a, d, h, i, j, k, m, o, p 2. axial

Body Orientation, Direction, Planes, and Sections

4. Describe completely the standard human anatomical position. Standing erect, feet together, head and toes pointed forward, arms hanging at sides with palms forward.
5. Define **section**: A cut along an imaginary plane through the body wall or organ.

6. Several incomplete statements are listed below. Correctly complete each statement by choosing the appropriate anatomical term from the key. Record the key letters and/or terms on the correspondingly numbered blanks below.

 Key:
 - a. anterior d. inferior g. posterior j. superior
 - b. distal e. lateral h. proximal k. transverse
 - c. frontal f. medial i. sagittal

 In the anatomical position, the face and palms are on the __1__ body surface; the buttocks and shoulder blades are on the __2__ body surface; and the top of the head is the most __3__ part of the body. The ears are __4__ and __5__ to the shoulders and __6__ to the nose. The heart is __7__ to the vertebral column (spine) and __8__ to the lungs. The elbow is __9__ to the fingers but __10__ to the shoulder. The abdominopelvic cavity is __11__ to the thoracic cavity and __12__ to the spinal cavity. In humans, the dorsal surface can also be called the __13__ surface; however, in quadruped animals, the dorsal surface is the __14__ surface.

 If an incision cuts the heart into right and left parts, the section is a __15__ section; but if the heart is cut so that superior and inferior portions result, the section is a __16__ section. You are told to cut a dissection animal along two planes so that both kidneys are observable in each section. The two sections that will always meet this requirement are the __17__ and __18__ sections. A section that demonstrates the continuity between the spinal and cranial cavities is a __19__ section.

 1. __a; anterior__
 2. __g; posterior__
 3. __j; superior__
 4. __f; medial__
 5. __j; superior__
 6. __e; lateral__
 7. __a; anterior__
 8. __f; medial__
 9. __h; proximal__
 10. __b; distal__
 11. __d; inferior__
 12. __a; anterior__
 13. __g; posterior__
 14. __j; superior__
 15. __i; sagittal__
 16. __k; transverse__
 17. __c; frontal__
 18. __k; transverse__
 19. __i; sagittal__

7. Correctly identify each of the body planes by inserting the appropriate term for each on the answer line below the drawing.

 - (a) __median (mid-sagittal) plane__
 - (b) __frontal plane__
 - (c) __transverse plane__
8. Draw a kidney as it appears when sectioned in each of the three different planes.

9. Correctly identify each of the nine areas of the abdominal surface by inserting the appropriate term for each of the letters indicated in the drawing.

 a. epigastric region
 b. right hypochondriac region
 c. left hypochondriac region
 d. umbilical region
 e. right lumbar region
 f. left lumbar region
 g. hypogastric (pubic) region
 h. right iliac region
 i. left iliac region

10. Which body cavity would have to be opened for the following types of surgery or procedures? (Insert letter of key choice in same-numbered blank. More than one choice may apply.)

 Key: a. abdominopelvic b. cranial c. dorsal d. spinal e. thoracic f. ventral

 —— e, f 1. surgery to remove a cancerous lung lobe —— a, f 4. appendectomy
 —— a, f 2. removal of the uterus, or womb —— a, f 5. stomach ulcer operation
 —— b, c 3. removal of a brain tumor —— d, c 6. delivery of pre-operative “saddle” anesthesia
11. Name the muscle that subdivides the ventral body cavity. \textit{Diaphragm}

12. Which organ system would not be represented in any of the body cavities? \textit{Skeletal, muscular, integumentary}

13. What are the bony landmarks of the abdominopelvic cavity? \textit{Dorsally, the vertebral column; laterally and anteriorly, the pelvis}

14. Which body cavity affords the least protection to its internal structures? \textit{Abdominal}

15. What is the function of the serous membranes of the body? \textit{The serous membranes produce a lubricating fluid (serous fluid) that reduces friction as organs slide across one another or against the cavity walls during their functioning.}

16. Using the key choices, identify the small body cavities described below.

\textbf{Key:}
\begin{itemize}
\item a. middle ear cavity
\item b. nasal cavity
\item c. oral cavity
\item d. orbital cavity
\item e. synovial cavity
\end{itemize}

\begin{itemize}
\item \textit{d; orbital cavity} 1. holds the eyes in an anterior-facing position
\item \textit{a; middle ear cavity} 2. houses three tiny bones involved in hearing
\item \textit{b; nasal cavity} 3. contained within the nose
\item \textit{c; oral cavity} 4. contains the tongue
\item \textit{e; synovial cavity} 5. lines a joint cavity
\end{itemize}

17. On the incomplete flowchart provided below:

- Fill in the cavity names as appropriate to boxes 3–8.
- Then, using either the name of the cavity or the box numbers, identify the descriptions in the list that follows.

\begin{itemize}
\item a. contained within the skull and vertebral column
\item b. houses female reproductive organs
\item c. the most protective body cavity
\item d. its name means belly
\item e. contains the heart
\item f. contains the small intestine
\item g. bounded by the ribs
\item h. its walls are muscular
\end{itemize}
Organ Systems Overview

Time Allotment: 1 1/2 hours (rat dissection: 1 hour; if performing reproductive system dissection, 1/2 hour each for male and female; dissectible human torso model: 1/2 hour).

Multimedia Resources: See Appendix B for Guide to Multimedia Resource Distributors.

- *Homeostasis* (FHS: 20 minutes, VHS, DVD, 3-year streaming webcast)
- *Homeostasis: The Body in Balance* (HRM: 26 minutes, VHS, DVD)
- *Organ Systems Working Together* (WNS: 14 minutes, VHS)
- *Practice Anatomy Lab™ 2.0 (PAL)* (BC: CD-ROM, Website)

Solutions:

- *Bleach Solution, 10%*

 Measure out 100 milliliters of household bleach. Add water to a final volume of 1 liter.

Laboratory Materials

Ordering information is based on a lab size of 24 students, working in groups of 4. A list of supply house addresses appears in Appendix A.

Dissectible human torso model or cadaver	6–12 blunt probes	6–12 dissecting trays
6–12 forceps	Disposable gloves, soap, and sponges	Lab disinfectant or 10% bleach solution
6–12 scissors	6–12 freshly killed or preserved rats	Twine or large dissecting pins

Advance Preparation

1. Make arrangements for appropriate storage and disposal of dissection materials. Check with the Department of Health or the Department of Environmental Protection, or their counterparts, for state regulations.

2. Designate a disposal container for organic debris, set up a dishwashing area with hot soapy water and sponges, and provide lab disinfectant such as Wavicide-01 (Carolina) or bleach solution for washing down the lab benches.

3. Set out safety glasses and disposable gloves for dissection of freshly killed animals (to protect students from parasites) and for dissection of preserved animals.

4. Decide on the number of students in each dissecting group (a maximum of four is suggested, two is probably best). Each dissecting group should have a dissecting pan, dissecting pins, scissors, blunt probe, forceps, twine, and a preserved or freshly killed rat.

5. Preserved rats are more convenient to use unless small mammal facilities are available. If live rats are used, they may be killed a half-hour or so prior to the lab by administering an overdose of ether or chloroform. To do this, remove each rat from its cage and hold it firmly by the skin at the back of its neck. Put the rat in a container with cotton soaked in ether or chloroform. Seal the jar tightly and wait until the rat ceases to breathe.

6. Set out dissectible human torso models and a dissected human cadaver if available.
Comments and Pitfalls

1. Students may be overly enthusiastic when using the scalpel and cut away organs they are supposed to locate and identify. Therefore, use scissors to open the body. Have blunt probes available as the major dissecting tool.

2. Be sure the lab is well ventilated, and encourage students to take fresh air breaks if the preservative fumes are strong. If the dissection animal will be used only once, it can be rinsed to remove most of the excess preservative.

3. Organic debris may end up in the sinks, clogging the drains. Remind the students to dispose of all dissection materials in the designated container.

4. Inferior vena cava and aorta may be difficult to distinguish in uninjected specimens.

Answers to Pre-Lab Quiz (p. 15)

1. The cell
2. c. organ
3. nervous
4. respiratory
5. urinary
6. diaphragm

Answers to Activity Questions

Activity 5: Examining the Human Torso Model (p. 24)

2. From top to bottom, the organs pointed out on the torso model are: brain, trachea, thyroid gland, lung, heart, diaphragm, liver, stomach, spleen, large intestine, greater omentum, small intestine

3. Dorsal body cavity: brain, spinal cord
 Thoracic cavity: aortic arch, bronchi, descending aorta (thoracic region), esophagus, heart, inferior vena cava, lungs, and trachea
 Abdominopelvic cavity: adrenal gland, descending aorta (abdominal region), greater omentum, inferior vena cava, kidneys, large intestine, liver, mesentery, pancreas, rectum, small intestine, spleen, stomach, ureters, urinary bladder

 Note: The diaphragm separates the thoracic cavity from the abdominopelvic cavity.

 Right Upper Quadrant: right adrenal gland, right kidney, large and small intestine, liver, mesentery, pancreas, stomach, right ureter
 Left Upper Quadrant: left adrenal gland, descending aorta, greater omentum, left kidney, large and small intestine, mesentery, pancreas, spleen, stomach, left ureter
 Right Lower Quadrant: large and small intestine, mesentery, rectum, right ureter, urinary bladder
 Left Lower Quadrant: descending aorta, greater omentum, large and small intestine, left ureter, urinary bladder

4. Digestive: esophagus, liver, stomach, pancreas, small intestine, large intestine (including rectum)
 Urinary: kidneys, ureters, urinary bladder
 Cardiovascular: aortic arch, heart, descending aorta, inferior vena cava
 Endocrine: pancreas, adrenal gland, thyroid gland
 Reproductive: none
 Respiratory: lungs, bronchi, trachea
 Lymphatic/Immunity: spleen
 Nervous: brain, spinal cord
1. Use the key below to indicate the body systems that perform the following functions for the body. Then, circle the organ systems (in the key) that are present in all subdivisions of the ventral body cavity.

Key:
- a. cardiovascular
- b. digestive
- c. endocrine
- d. integumentary
- e. lymphatic/immunity
- f. muscular
- g. nervous
- h. reproductive
- i. respiratory
- j. skeletal
- k. urinary

1. rids the body of nitrogen-containing wastes
2. is affected by removal of the thyroid gland
3. provides support and levers on which the muscular system acts
4. includes the heart
5. causes the onset of the menstrual cycle
6. protects underlying organs from drying out and from mechanical damage
7. protects the body; destroys bacteria and tumor cells
8. breaks down ingested food into its building blocks
9. removes carbon dioxide from the blood
10. delivers oxygen and nutrients to the tissues
11. moves the limbs; facilitates facial expression
12. conserves body water or eliminates excesses
13. facilitate conception and childbearing
14. controls the body by means of chemical molecules called hormones
15. is damaged when you cut your finger or get a severe sunburn

2. Using the above key, choose the organ system to which each of the following sets of organs or body structures belongs.

<table>
<thead>
<tr>
<th>e; lymphatic/immunity</th>
<th>1. thymus, spleen, lymphatic vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>j; skeletal</td>
<td>2. bones, cartilages, tendons</td>
</tr>
<tr>
<td>c; endocrine</td>
<td>3. pancreas, pituitary, adrenals</td>
</tr>
<tr>
<td>i; respiratory</td>
<td>4. trachea, bronchi, alveoli</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>d; integumentary</td>
<td>5. epidermis, dermis, cutaneous</td>
</tr>
<tr>
<td></td>
<td>and cutaneous sense organs</td>
</tr>
<tr>
<td>h; reproductive</td>
<td>6. testis, ductus deferens, urethra</td>
</tr>
<tr>
<td>b; digestive</td>
<td>7. esophagus, large intestine, rectum</td>
</tr>
<tr>
<td>f; muscular</td>
<td>8. muscles of the thigh, postural muscles</td>
</tr>
</tbody>
</table>
3. Using the key below, place the following organs in their proper body cavity.

Key:

a. abdominopelvic b. cranial c. spinal d. thoracic

Key:
a; abdominopelvic 1. stomach a; abdominopelvic 4. liver d; thoracic 7. heart
d; thoracic 2. esophagus c; spinal 5. spinal cord d; thoracic 8. trachea
a; abdominopelvic 3. large intestine a; abdominopelvic 6. urinary bladder a; abdominopelvic 9. rectum

4. Using the organs listed in question 3 above, record, by number, which would be found in the abdominal regions listed below.

<table>
<thead>
<tr>
<th>Region</th>
<th>Organs</th>
</tr>
</thead>
<tbody>
<tr>
<td>hypogastric region</td>
<td>3, 6, 9</td>
</tr>
<tr>
<td>right lumbar region</td>
<td>3</td>
</tr>
<tr>
<td>umbilical region</td>
<td>3</td>
</tr>
</tbody>
</table>

5. The levels of organization of a living body are chemical, ____________, ____________, ____________, and organism.

6. Define organ. A body part (or structure) that is made up of two or more tissue types and performs a specific body function, e.g., the stomach, the kidney

7. Using the terms provided, correctly identify all of the body organs provided with leader lines in the drawings shown below. Then name the organ systems by entering the name of each on the answer blank below each drawing.

Key: blood vessels heart nerves spinal cord urethra

8. Why is it helpful to study the external and internal structures of the rat? Many of the external and internal structures are similar to those in the human. Studying the rat can help you to understand your own structure.
If students have already had an introductory biology course where the microscope has been introduced and used, there might be a temptation to skip this exercise. I have found that most students need the review, so I recommend spending this time early in the course to make sure they are all comfortable with the microscope, as it is used extensively throughout the laboratory manual.

Time Allotment: 2 hours.

Solutions:

Bleach Solution, 10%
Measure out 100 milliliters of household bleach. Add water to a final volume of 1 liter.

Methylene Blue Solution (Loeffler's)
Weigh out 0.5 gram methylene blue, 1 milliliter 1% potassium hydroxide solution, and 30 milliliters ethanol, absolute. Add to 100 milliliters distilled water. Warm the water to about 50 degrees C, stir in methylene blue and add other ingredients; filter.

Physiologic Saline (Mammalian, 0.9%)
Weigh out 9 grams of NaCl. Add distilled/deionized water to a final volume of 1 liter. Make fresh just prior to experiment.

Laboratory Materials

Ordering information is based on a lab size of 24 students, working in groups of 4. A list of supply house addresses appears in Appendix A.

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 compound microscopes, lens cleaning solution, lens paper, immersion oil</td>
<td></td>
</tr>
<tr>
<td>24 millimeter rulers</td>
<td></td>
</tr>
<tr>
<td>24 slides of the letter e</td>
<td></td>
</tr>
<tr>
<td>24 slides with millimeter grids</td>
<td></td>
</tr>
<tr>
<td>24 slides of crossed colored threads</td>
<td></td>
</tr>
<tr>
<td>(threads should cross at a single junction)</td>
<td></td>
</tr>
<tr>
<td>Filter paper or paper towels</td>
<td></td>
</tr>
<tr>
<td>1 box of microscope slides</td>
<td></td>
</tr>
<tr>
<td>1 box of coverslips</td>
<td></td>
</tr>
<tr>
<td>1 box of flat-tipped toothpicks</td>
<td></td>
</tr>
<tr>
<td>8–12 dropper bottles of physiologic saline</td>
<td></td>
</tr>
<tr>
<td>8–12 dropper bottles of methylene blue stain (dilute) or iodine</td>
<td></td>
</tr>
<tr>
<td>24 slides of cheek epithelial cells</td>
<td></td>
</tr>
<tr>
<td>10% bleach solution</td>
<td></td>
</tr>
<tr>
<td>Autoclave bag, disposable</td>
<td></td>
</tr>
</tbody>
</table>

Advance Preparation

1. Provide each student with a compound microscope, millimeter ruler, bottle of immersion oil, lens paper, and millimeter grid slide. A supply of glass cleaner, such as Windex™, should be available for lens cleaning.

2. Have available slides of the letter e and slides of crossed colored threads. Some instructors prefer to have slides for an entire semester available in individual boxes, which can be handed out to students. Others prefer to keep the slides on trays to be distributed as needed.

3. Set up an area for wet mount supplies, including clean microscope slides and coverslips, flat-tipped toothpicks, *physiologic saline*, methylene blue stain or iodine, and filter paper, or set out prepared slides of cheek epithelial cells.